skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shi, Shusu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 30, 2026
  2. Cheshkov, C; Guernane, R; Maire, A (Ed.)
    Recently, seven produced hadron species have been used to construct multiple hadron sets with given differences in the net electric charge (∆q) and strangeness (∆S) between the two sides. A nonzero directed flow difference △v1has been proposed as a consequence of the electromagnetic field produced in relativistic heavy ion collisions. Previously, we have shown with quark coalescence that Av1 and the slope difference △v′1depend linearly on both △qand ∆Swith zero intercept. Here we emphasize that a two-dimensional function or fit is necessary for extracting the △q- and △S-dependences of △v1. On the other hand, a one-dimensional fit gives a different value for the slope parameter of the ∆q- or ∆S-dependence. Furthermore, a one-dimensional fit is incorrect because its slope parameter depends on the arbitrary scaling factor of a hadron set and is thus ill-defined. We use test data of △v1to explicitly demonstrate these points. 
    more » « less
  3. Abstract We study the production of$$D^0$$ D 0 meson inp+pandp-Pb collisions using the improved AMPT model considering both coalescence and independent fragmentation of charm quarks after the Cronin broadening is included. After a detailed discussion of the improvements implemented in the AMPT model for heavy quark production, we show that the modified AMPT model can provide a good description of$$D^0$$ D 0 meson spectra inp-Pb collisions, the$$Q_{\textrm{pPb}}$$ Q pPb data at different centralities and$$R_{\textrm{pPb}}$$ R pPb data in both mid- and forward (backward) rapidities. We also studied the effects of nuclear shadowing and parton cascade on the rapidity dependence of$$D^{0}$$ D 0 meson production and$$R_{\textrm{pPb}}$$ R pPb . Our results indicate that using the same strength of the Cronin effect (i.e$$\delta $$ δ value) as that obtained from the mid-rapidity data leads to a considerable overestimation of the$$D^0$$ D 0 meson spectra and$$R_{\textrm{pPb}}$$ R pPb data at high$$p_{\textrm{T}}$$ p T in the backward rapidity. As a result, the$$\delta $$ δ is determined via a$$\chi ^2$$ χ 2 fitting of the$$R_{\textrm{pPb}}$$ R pPb data across various rapidities. This work lays the foundation for a better understanding of cold-nuclear-matter (CNM) effects in relativistic heavy-ion collisions. 
    more » « less